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1.0 Purpose 
Areas of high solar energy potential are often in fragile environments that are easily disturbed 
and hard to restore. The best way to minimize environmental impacts in accordance with the 
National Environmental Policy Act (NEPA) is to find project sites that avoid the potential for 
impact from even occurring. However, the pressure to develop renewable energy is so recent 
that conservation planning has not been completed. Once conservation plans are completed, 
they will identify the sites of greatest ecological importance that should be off-limits to energy 
projects. In the interim, there is a great need to map sites that energy developers and 
conservation interests can agree have low potential conservation value and thus can avoid 
conflict in the review and permitting process. Developers generally accept that some sites will 
become off-limits to protect imperiled species, but they prefer that the map of remaining lands 
identify the relative potential for conflict/risk rather than a prescriptive binary map that 
declares where solar projects would not be allowed based on solely conservation value. They 
prefer to be informed of the decision risk and then make an informed business decision that 
considers all relevant factors. 

The purpose of this document is to present an assessment method for modeling the relative 
degree of compatibility of new solar energy projects in the Mojave and Sonoran Deserts of 
southern California with biological conservation value. Developing projects on low 
compatibility lands increases the risk of loss of conservation values and the risk that solar 
developers would face stiff opposition from conservation interests or high mitigation costs from 
siting projects. Although the two forms of risk are perceived from opposite directions, both 
share a similar measurement of the potential for conflict. The range of values runs from most 
compatible to most potential conflict. We have chosen a compatibility indicator, from most to 
least compatible, rather than conflict, to highlight the potential for concurrently meeting 
renewable energy and biological conservation goals. Use of the most compatible sites 
corresponds to the “no regrets” strategy recommended by an independent science advisory 
group (Spencer et al. 2010). 

This work, performed at the Biogeography Lab (http://www.biogeog.ucsb.edu/) at the 
University of California Santa Barbara (UCSB), was funded by the California Energy 
Commission PIER program. In developing the GIS tools to model compatibility, we 
incorporated the logic that highly degraded sites close to infrastructure would have the least 
potential value for biodiversity conservation (Audubon California et al. 2009, Kiesecker et al. 
2011). Because of the large geographic scale, the analysis is dependent upon standardized, 
publicly available spatial data sets of land uses. Large-scale mapping of land uses will tend to 
miss some existing disturbances, such as off-road vehicle tracks through the desert. For the 
purposes of mapping risk, however, such errors of omission (ground conditions are more 
degraded than indicated by the model) are less treacherous, at least to conservationists, than 
commission errors by which the model may incorrectly identify a site as being highly degraded 
and of low conservation value (Andreasen et al. 2001). Therefore we have consciously taken a 
conservative approach in applying spatial data to minimize errors of commission. For solar 
developers, the risk of omission errors represents missed opportunities, whereas commission 
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errors might lead to wasted effort pursuing sites that encounter resistance later in the process. 
In the modeling, we have scaled scores by the following standard: 

Higher score = more compatible = more likely suitable for solar development 

The document lays out the logic of the model as well as the spatial data inputs, assumptions, 
and processing to foster acceptance by stakeholders. It also presents results of validation against 
photo plots and comparisons with similar models by The Nature Conservancy and USGS. The 
model was vetted with knowledgeable stakeholders in terms of: 

1. The logic of how the criteria are assembled and combined 

2. The spatial data—are there better sources? Are any key data missing? 

3. Usefulness of the products—do they provide stakeholders with the right level of detail 
and accuracy? 

The model and mapped outputs represent the final iteration following the validation and 
review processes.  

1.1. What this model is not 
Please note that this modeling only addresses potential conflict with biological resources based 
on ecological condition. It is not a complete assessment of suitability for solar energy 
development. However, this model can be used by developers in conjunction with models of 
other constraints (e.g., steep terrain, parcelization, visibility) and opportunities (e.g., solar 
insolation, proximity to transmission capacity) in order to make comprehensive siting decisions. 

The model is also not a comprehensive assessment of biological conservation value. No 
biological observations or species distribution models were used in constructing this model. 
The Desert Renewable Energy Conservation Plan (DRECP) process (http://www.drecp.org/) is 
currently conducting such a planning process. Our product is intended to complement the 
DRECP. 

1.2. Disclaimer 
The University of California makes no warranty, expressed or implied, as to the use or 
appropriateness of use of the data, nor are there warranties of merchantability or fitness for a 
particular purpose or use. No representation is made as to the currency, accuracy or 
completeness of the data set or of the data sources on which it is based. The University of 
California shall not be liable for any lost profits or consequential damages, or claims against the 
user by third parties. 
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2.0 Methods 

2.1. Choice of study area, data type, and spatial resolution 
Our study was charged with assessing the California Deserts and not any particular planning 
boundary. Therefore the boundary of the American Semi-Desert and Desert province (#322) of 
the US Forest Service ECOMAP was used to delineate the basic area 
(http://www.fs.fed.us/r5/projects/ecoregions/ca_sections.htm). This boundary was buffered by 
20 kilometers to minimize omissions of potential solar energy sites while excluding the major 
population centers of southern California. As a final step, the buffered desert province was 
clipped to the boundary of counties for which detailed land cover mapping was available from 
the Farmland Mapping and Monitoring Program (FMMP); Inyo County has not been mapped 
and was therefore excluded. 

The relative ecological condition data layer generated from this analysis was also intended to be 
used in other phases of the overall study, including species distribution modeling, offset 
modeling, and cumulative impact assessment. To be most useful for these other tasks, all spatial 
data were processed in grid or raster format at 90m resolution. This was the highest common 
resolution at which other data sets were available (e.g., climate). For purposes of identifying 
compatible sites for solar energy projects, which typically require a minimum of 15 hectares, 
this resolution was considered adequate. The raster format is used in most species distribution 
modeling approaches. Furthermore the data must cover all lands in the study region, not just 
sites with good solar potential.  

2.2. “Logic network” 
In fragile ecosystems such as the California Deserts where the initial generation of utility-scale 
solar projects will be centered, any lands in pristine condition may ultimately prove to have 
significant conservation value. The best way to minimize impacts in this case is to site projects 
on lands that are already degraded and that are relatively close to infrastructure (Audubon 
California et al. 2009). Therefore the first level of our logic network for evaluating compatibility 
is to determine the current level of degradation (on-site impact) and how much additional 
degradation would be generated by connecting the site to existing road/substation/transmission 
line infrastructure (off-site impact) (Figure 1).  
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F igure 1.  T op level of the logic  network s howing overall rating of biologic al ris k bas ed on-s ite 
degradation and off-s ite dis turbance. In all map ins erts , red indic ates  mos t c ompatible with 
biological res ourc es , and blue is  the leas t c ompatible. Only the wes tern Mojave Des ert is  s hown 
to allow details  to be s een. 

2.2.1. On-site Impacts 
Analysts frequently model ecological condition directly from various human activities such as 
building roads, urban development, and agriculture. In this study, the level of degradation was 
modeled with reference to change in general ecological condition or landscape integrity. 
Specifically, degradation was modeled in terms of removal of vegetative cover (impacted native 
cover) and degree of habitat fragmentation (Figure 2). Scores were scaled such that the most 
degraded sites were rated highest, the best for solar development from the perspective of 
minimizing biological impact. Ideally modeling would have included soil compaction and 
damage to biological soil crusts that take long time periods to recover (Webb et al. 2009), but 
appropriate data were not available.  
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F igure 2.  L ogic  for on-s ite degradation.  

 

Loss or reduction of vegetative cover can either be considered essentially permanent where 
human activities have high investments such as urban development, contaminated sites, and 
utilities, or it may be recovering from past disturbance such as farming (Webb et al. 2009) 
(Figure 3). Although native vegetative cover may eventually recover from farming or fire, the 
soil crust is removed by plowing and therefore would tend to be of lower conservation priority. 
Repeated fire in mid-elevation desert shrubland can allow invasive annual grasses to establish 
and alter the fire regime, particularly after wet years (Brooks and Matchett  2006, T. Esque, 
personal communication). To model ecological condition in future time periods, such as for 
modeling cumulative impacts, urban growth scenarios and renewable energy projects (blue 
boxes) can be substituted for current land uses. Fragmentation is caused by linear features such 
as roads and railroads, transmission lines, and large canals or aqueducts (Figure 4). Future 
transmission lines (blue box) can be incorporated for modeling cumulative impacts. 
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F igure 3.  L ogic  for impac ted native vegetative c over. R ed boxes  are data inputs . G ray boxes  are 
intermediate outputs . B lue boxes  with gray arrows  repres ent future land us e data to determine 
future ecologic al degradation in urban growth and energy s cenarios .  
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F igure 4.  L ogic  for habitat fragmentation. B lue box with gray arrow repres ents  future trans mis s ion 
lines  to determine future habitat fragmentation in energy s c enarios .  

2.2.2. Off-site Impacts 
Most suitability and constraints analyses of renewable energy projects attempt to minimize 
geographic distance from existing infrastructure as a surrogate for capital costs and permitting 
challenges (e.g., Carrión et al. 2008, Janke 2010, Charabi and Gastli 2011). From an ecological 
perspective, a greater distance to connect sites also potentially causes more impacts. However, 
just as sites vary in their current condition and the degree that solar development would cause 
new impacts, the landscape through which new access roads and collector and trunklines 
would be constructed also varies. Consequently the off-site impact was calculated as a “cost-
distance” over a cost surface (inverse of condition layer) (Figure 5). Stakeholders were 
concerned about the relative cost of sites in different parts of the desert. In more heavily 
modified areas of the desert, even sites in the best condition might be moderately degraded. We 
therefore standardized condition scores by ecological subregions (ECOMAP subsections). 
Scores below the mean for the subregion were divided by two to make them less compatible 
(higher conflict) than would otherwise be the case. This step has no effect on the sites modeled 
as most compatible. 
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Cost-distance combines both the geographic distance of crossing a grid cell and the cost or 
additional ecological impact of doing so, summed over all cells in the least-cost pathway. Cost-
distances were generated separately from paved highways, existing electrical substations, and 
existing transmission lines. The cost surface treated lands that are off-limits to connect new 
power projects, such as parks and wilderness (i.e., RETI Category I exclusion areas), as barriers 
that were assigned very high costs. Designated critical habitat areas for listed species are not 
off-limits to infrastructure projects but crossing them would be incompatible with biodiversity; 
a high cost was assigned to them. In the case of off-site impacts, the highest compatibility would 
be for sites whose connection pathway was already degraded, so the cost surface was scaled 
with the least-degraded sites as the highest cost. The cost-distance scores (roads, substations, 
and transmission lines) were aggregated by averaging them. Note that the overall cost-distance 
score represents the lowest possible cumulative impact to connect a site. The actual pathway for 
access roads and connector lines may follow a higher impact route, especially if the financial 
cost is lower. Some solar technologies require large amounts of water so proximity to municipal 
wastewater treatment plants is sometimes recommended as well. This criterion was not 
included in the current version of the model. 

 
F igure 5.  L ogic  for off-s ite impac t. C os t-dis tanc e is  c alc ulated s eparately from highways , exis ting 
s ubs tations , and trans mis s ion lines .  
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2.3. Spatial modeling 
The logic diagrams were translated into spatial modeling tools with ArcGIS 9.3 ModelBuilder 
(See Appendix for Details of GIS compatibility modeling). 

For the modeling recovery of vegetative cover following agriculture, we adopted the natural log 
recovery function presented by Webb et al. (2009) (Figure 6). 

 
F igure 6.  R ecovery function for vegetative c over derived from W ebb et al. (2009).  

2.4. Validation and testing 
Validation is challenging because the model outcome is not directly measureable in the field. 
Stakeholders can rightly be skeptical of the product if there is not some level of validation, 
however. The degradation/condition layer was evaluated against a set of 381 random points 
(Figure 7) that were photointerpreted from 2009-2010 NAIP natural color imagery with 1 m 
spatial resolution. Each random coordinate pair was used as the center point of a 90 m radius 
photo-plot. For each point, we recorded the overall level of disturbance of the land (none, slight, 
substantial, complete transformation). If land was disturbed, we recorded the land use 
associated with the disturbance, if discernable (see Appendix for details on coding). To test the 
modeled degree of fragmentation, we counted the number of highways, roads (paved and 
unpaved), transmission lines, and railways visible in the imagery and weighted each category 
similar to the modeled version. These points were then compared with the modeled predictions 
of On-site Degradation, Impacted Native Cover, and Degree of Fragmentation. We looked for 
general patterns of agreement for the points identified to be located on land with some level of 
disturbance. Out of the 381 points, 284 showed no discernable land use disturbance. 
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F igure 7.  L oc ations  of random points  us ed for validation of compatibility modeling c olored by 
coding for impac ted native cover.  

 

2.5. Initial model modifications  
Investigating the mismatches between plots and the initial modeling led to several 
modifications in the model: 

• Farmland of Local Importance in FMMP mapping was removed from the Ag 
Disturbance model (Figure 3). In the desert counties, this class was generally used 
for agricultural soils that were not being irrigated or cultivated. Hence they were in 
better condition than other farmland.  

• Burned areas were generally not evident in the orthophotography, and therefore the 
recovery modeling led to higher scores than the photointerpretation for those plots. 
As a result, fire recovery was downweighted relative to agricultural recovery (Figure 
3).  

• Utility lines were dropped from the “Permanent” Removal model to avoid double-
counting with fragmentation (Figure 3).  
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• Some large mines were detected in the photointerpretation that were outside of areas 
mapped for FMMP and are not tracked by EPA. A map of significant topographic 
change from USGS was obtained to model these sites (Kiesecker et al. 2011) and was 
included in the “Permanent” Removal model (Figure 3).  

• There are several large canals and aqueducts in the study area that are 8-25 meters 
across that were not accounted for in the initial modeling. These were added to the 
Fragmentation model (Figure 4). 

Overall, the on-site degradation model agrees strongly with the photoplot data in the no impact 
and high impact classes (Table 8 in Appendix). The model does best at not omitting 
identification of any highly degraded sites. The model also performs well at not falsely 
including highly degraded sites in areas identified in the photoplots as having no discernable 
impact. However, in general, the model tends to predict a greater degree of degradation across 
the landscape than was discerned in the photoplots. Specifically, the Impacted Native Cover 
model agrees most strongly with the photoplot data (Table 6 in Appendix). The observed 
discrepancies could be due to the fact that past fire and agricultural impacts were not 
discernable in the orthophotography. In the case of fragmentation, disagreement could be due 
to the small search radius used in photointerpretation (90m) compared to GIS modeling (450m) 
(Table 7 in Appendix).  

In the interest of finding the most parsimonious model, the correlations between some of the 
spatial data layers were calculated so that highly correlated criteria could be removed from the 
model. Specifically, the correlation between on-site degradation and off-site impact was only 
0.36, indicating that they were not highly redundant. Sites closest to infrastructure may also 
tend to be the most degraded, although not all degraded sites would be located close to all 
forms of infrastructure. Cost-distance includes geographic distance so the former may be 
correlated with the latter. If so, using simple Euclidean distance makes fewer assumptions that 
stakeholders might dispute. However, the correlation between Euclidean distance and cost-
distance was only 0.19. 

2.6. Peer review of initial model and final revisions 
We distributed the initial model results to a representative group of stakeholders on August 11, 
2011. We emailed a package with a white paper that described the logic, data, GIS analysis 
steps, validation process, and revision, plus a Google Earth visualization of the model’s 
intermediate and final results. We asked reviewers for feedback on the process, the products, 
and how it could be applied in the DRECP process. On August 25, we hosted a web meeting for 
feedback from nine reviewers from environmental groups and consulting firms. A few others, 
including agency staff, submitted additional written or verbal comments. (List of reviewers and 
their affiliations are in Appendix 6.3). These comments ranged from data sources to the 
calculation methods to documentation and publication of results. The main changes in the 
model from this review include: changing how wildfire was modeled to better reflect the threat 
of invasive annual grasses; reducing the score of the Vacant or Disturbed class in the FMMP 
data based on visual inspection of a large sample in the orthophotography; rescaling the 
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fragmentation scores to reduce its influence; adding US Fish and Wildlife Service Critical 
Habitat designations in the cost surface; standardizing Degraded scores within subregions as 
part of the cost surface modeling; and rescaling the off-site disturbance values based on the 
cost-distance analysis. 

2.7. Comparison to similar models 
There have been other efforts to map human impact in this study area that have used similar 
input data and methods. Therefore we also wanted to evaluate their scores with the photoplot 
data to determine if our modeling provided any systematic improvements. The first comparison 
is with the Human Footprint in the West (Leu et al. 2008). The Human Footprint (HF) initial 
scores had been binned equally into 10 classes, which we grouped into 4 larger groups roughly 
corresponding to our photointerpreted coding (Table 9 in Appendix). The HF classes for low 
impact (1) and high impact (8-10) matched well with the photoplots. However, the mid-range 
classes often indicated a greater impact than was observed in the photos. As a result, the HF 
could be a reasonable choice for modeling compatible sites with high degradation. 

The Nature Conservancy (TNC) recently conducted their own GIS analysis of degradation and 
fragmentation (Dick Cameron, unpublished data). TNC’s overall score was a combination of 
land use (0 undisturbed or 1 urban/agriculture, then smoothed using a focalmean function with 
an 810 m search radius) and fragmentation, weighted 4 to 1 respectively. Their study area was 
slightly different than ours so the number of points for comparison is different. Similar to the 
Human Footprint, TNC’s model did best at representing no impact and high impact classes, but 
less well at the mid-ranges (Table 10 in Appendix). Overall agreement with the photoplot data 
was considerably higher than for the Human Footprint. Our method for calculating 
fragmentation as a weighted line density was very similar to TNC’s. Like our results, TNC’s 
fragmentation scores did best in the lowest fragmentation class, but had relatively poor 
agreement in more fragmented classes (Table 11 in Appendix). Some of this discrepancy is 
probably related to the small search radius used in the photo interpretation (90m) compared to 
the GIS modeling (450m). It is also possible that our binning TNC fragmentation scores into 
classes may be suboptimal. 

We also compared the spatial distribution of degraded land from our On-site Degradation 
model with that of both Human Footprint in the West (Figure 8) and TNC (Figure 9) to 
determine the geographic pattern of where they were consistent or inconsistent in identifying 
the most degraded class. First we classified all three maps into the same degradation classes 
used for the photoplots. The areas colored in tan symbolize areas where the least degraded 
classifications (0-2) agree across the two models being compared. The areas colored in light 
turquoise symbolize agreement in the most highly degraded areas. Dark green designates areas 
where our model has identified the area as less degraded (classes 0-2), yet the other model has 
classified it as highly degraded. Finally, brown designates areas classified as highly degraded 
by our model only.  

In general, we found that the models tend to agree the most in the eastern part of the desert 
region where there is little impact due to fragmentation, urban development or agriculture. The 
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models show some disagreement in the extent of highly degraded areas, especially around 
Lancaster and Victorville where HF picked up more highly degraded areas than our model, yet 
TNC picked up less degradation than ours. In comparison with the TNC model, there is some 
disagreement surrounding agricultural areas due to the fact that agriculture is dynamic and 
often shifts locations from year to year, in which case the publication year of input data would 
affect model results. It should be noted that, due to the grouping of values into four broad 
classes, the disagreement shown in the comparison maps does not necessarily signify that there 
is a large discrepancy in the values assigned. Note that the HF and TNC models did not model 
Off-site Impact for connecting solar projects to the existing infrastructure, so they did not 
produce an output comparable to the compatibility index map. 

 

 
F igure 8.  C omparis on of degradation models  by UC S B  and the Human F ootprint (L eu et al.  2008).  
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F igure 9.  C omparis on of degradation models  by UC S B  and T NC .  

3.0 Results 

3.1. Compatibility scores in urban areas 
Because our purpose was to model compatibility with biological resources, and not overall 
suitability for solar energy projects, we included urban areas in the model and rated them as 
highly degraded and therefore as highly compatible. Urban areas, however, are generally 
agreed to be unsuitable for utility-scale solar energy. Therefore we summarized the 
compatibility scores with and without urban areas to identify the most compatible area that is 
also potentially available for solar development. For an objective definition of urban land, we 
used the map from the 2000 US Census of urbanized area and urban clusters. Removing urban 
areas from the model lowered the scores by an average of one point (Table 1). 

T able 1. Mean s cores  with and without urban lands .  

Land base Mean on-site degradation 

score 

Mean off-site 

impact score 

Mean 

compatibility 

score 

All lands 11.0 34.0 22.0 

All non-urban lands 9.8 33.1 20.9 
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Perhaps of greater interest is the area of land that is both most compatible and available outside 
of urban areas. Because compatibility scores are relative, we used two threshold scores to define 
“most compatible”—scores > 70 and more conservatively, scores > 90. Nearly 400,000 hectares 
were modeled above the higher threshold and 542,000 hectares at the lower threshold (Table 2). 
After excluding urban areas, roughly 75% of all lands remain at both thresholds. Thus there 
appears to be a sizeable area of degraded land close to infrastructure yet outside of towns. For 
reference, the CEC estimates that 65,000-97,000 hectares of utility scale solar projects will be 
required in the DRECP plan area to achieve 2050 GHG reduction goals (Vidaver 2011). 

T able 2. Area of mos t compatible land with and without urban lands .  

Land base Area (hectares) with 

compatibility score > 90  

Area (hectares) with 

compatibility score > 70  

All lands 392,460 541,652 

All non-urban lands 290,241 416,095 

 

3.2. Compatibility scores by land manager 
The criteria that characterize condition/degradation tend to emphasize private rather than 
public lands, despite the high level of interest in public lands for developing solar energy 
projects. We summarized the on-site degradation, off-site impact scores, and compatibility 
scores by major category of land owners or managers in the Protected Areas Database of the 
United States v1 (Table 3). Indeed, private land had much higher average scores in all three 
ratings than any public land agency. BLM lands, which are the focus of permit applications on 
public lands, appear to be in very good ecological condition, but have some sites that bring up 
the compatibility score compared to parks. 

T able 3. Mean s cores  by land manager.  

Land manager Mean on-site degradation 

score 

Mean off-site 

impact score 

Mean 

compatibility 

score 

Private land 31.4 66.0 47.6 

State of California (3100 - 3500) 3.4 2.9 2.9 

National Park Service (not available for solar projects)  

(1600) 

3.0 0.8 1.8 

Bureau of Land Management (1100) 3.5 27.5 15.2 

U. S. Forest Service (1400) 15.8 37.8 25.6 

U. S. Fish and Wildlife Service (not available for solar 

projects) (1300) 

3.3 21.8 12.2 

Department of Defense (not available for solar projects) 

(1500) 

3.7 33.3 18.0 

Native American Lands (2200) 21.0 30.0 24.2 

 



 
 

16 
 

3.3. Model results in Solar Energy Zones (SEZs) 
The BLM Solar Programmatic Environmental Impact Statement (Solar PEIS, BLM/DOE 2010) 
designated Solar Energy Zones (SEZs, http://solareis.anl.gov/sez/index.cfm) on public lands in 
California and other states. Their logic was similar in trying to minimize conflicts with natural 
and cultural resources; therefore we would not expect SEZs to be relatively far from existing 
infrastructure nor on pristine land. We summarized our On-site Degradation Scores, Off-site 
Impacts Scores, and final Compatibility scores within the set of SEZs in the California Deserts 
(Table 12 and Table 13 in Appendix). Our results show that SEZs tend to score low for On-site 
Degradation, i.e. they are in relatively good ecological condition; however, being close to 
existing transmission lines and highways, SEZs received relatively high scores for Off-site 
Impacts. This highlights an important tradeoff on public lands where lands suitable for solar 
energy tend to be in less-degraded condition than private lands, but may at least be close to 
existing infrastructure to minimize impacts.  

4.0 Acknowledgements 
This project was funded by the California Energy Commission’s Public Interest Energy 
Research (PIER) Program under Contract # 500-10-021. We thank the experts who reviewed a 
preliminary version of the modeling—they are listed by name and affiliation in Appendix 6.3.   

5.0 References 
Andreasen, J. K., R. V. O’Neill, R. Noss and N. C. Slosser. 2001. Considerations for the 

development of a terrestrial index of ecological integrity. Ecological Indicators 1: 21-35.  

Audubon California, California Wilderness Coalition, Defenders of Wildlife, Desert Protective 
Council, Mojave Desert Land Trust, Natural Resources Defense Council, Sierra Club, 
The Nature Conservancy, The Wilderness Society and The Wildlands Conservancy. 
2009. Renewable Siting Criteria for California Desert Conservation Area. Online at 
http://www.defendersofwildlife.org/resources/publications/policy_and_legislation/rene
wable_citing_criteria_for_california_desert_conservation_area.pdf. 

BLM/DOE. 2010. Draft Programmatic Environmental Impact Statement (EIS) for Solar Energy 
Development in Six Southwestern States. BLM/DES 10–59, DOE/EIS—0403. Online at 
http://solareis.anl.gov/documents/dpeis/index.cfm.  

Brooks, M. L. and J. R. Matchett. 2006. Spatial and temporal patterns of wildfires in the Mojave 
Desert, 1980–2004. Journal of Arid Environments 67, Supplement: 148-164. 

Carrión, J. A., A. Espín Estrella, F. Aznar Dols and A. R. Ridao.  2008.  The electricity production 
capacity of photovoltaic power plants and the selection of solar energy sites in 
Andalusia (Spain).  Renewable Energy 33: 545-552. 

Charabi, Y. and A. Gastli.  2011.  PV site suitability analysis using GIS-based spatial fuzzy multi-
criteria evaluation.  Renewable Energy 36: 2554-2561. 

http://solareis.anl.gov/sez/index.cfm�
http://www.defendersofwildlife.org/resources/publications/policy_and_legislation/renewable_citing_criteria_for_california_desert_conservation_area.pdf�
http://www.defendersofwildlife.org/resources/publications/policy_and_legislation/renewable_citing_criteria_for_california_desert_conservation_area.pdf�
http://solareis.anl.gov/documents/dpeis/index.cfm�


 
 

17 
 

EPA OSWER Center for Program Analysis. Undated. Data Guidelines for “Renewable Energy 
Generation Potential on EPA and State Tracked Sites” Maps. Online at 
http://www.epa.gov/renewableenergyland/data.htm. 

Janke, J. R.  2010.  Multicriteria GIS modeling of wind and solar farms in Colorado.  Renewable 
Energy 35: 2228-2234. 

Kiesecker, J. M., J. S. Evans, J. Fargione, K. Doherty, K. R. Foresman, T. H. Kunz, D. Naugle, N. 
P. Nibbelink and N. D. Niemuth. 2011. Win-win for wind and wildlife: A vision to 
facilitate sustainable development. PLoS ONE 6: e17566. 

Leu, M., S. E. Hanser and S. T. Knick. 2008. The human footprint in the west: A large-scale 
analysis of anthropogenic impacts. Ecological Applications 18: 1119-1139. 

Spencer, W. D., S. Abella, C. Barrows, K. Berry, T. Esque, K. Garrett, C. A. Howell, R. Kobaly, R. 
Noss, R. Redak, R. Webb, and T. Weller. 2010. Recommendations of independent science 
advisors for the California Desert Renewable Energy Conservation Plan (DRECP). 
DRECP-1000-2010-008-F, Unpublished Report to the Renewable Energy Action Team 
(California Department of Fish and Game, U.S. Fish and Wildlife Service, U.S. Bureau of 
Land Management, and California Energy Commission. 

Vidaver, D. 2011. 2040 and 2050 Acreage Needs for Renewable Generation. Online, accessed 
December 15, 2011: http://www.drecp.org/meetings/2011-12-
05_meeting/presentations/D-Vidaver_2040_and_2050_DRECP_WG_Final_10-21-
2011.pdf 

Webb, R. H., J. Belnap, and K. A. Thomas. 2009. Natural recovery from severe disturbance in the 
Mojave Desert. Pages 343-377 in Webb, R. H., L. F. Fenstermaker, J. S. Heaton, D. L. 
Hughson, E. V. McDonald, and D. M. Miller (eds.), The Mojave Desert: Ecosystems, 
Processes and Sustainability, University of Nevada Press, Reno. 

 
  



 
 

18 
 

6.0 Appendices 

6.1. Details of GIS compatibility modeling 
T able 4. G IS  input data s ources .  

GIS input data layer Source 

ECOMAP (USFS) EcoregionsCalifornia07_3 http://www.fs.fed.us/r5/rsl/clearinghouse/gis-download.shtml  

Farmland Mapping and Monitoring Program (FMMP) http://www.conservation.ca.gov/dlrp/fmmp/Pages/Index.aspx  

Fire perimeters (FRAP) fire09_1.gdb http://frap.cdf.ca.gov/data/frapgisdata/select.asp  

Develop (extracted from FMMP 2008) http://www.conservation.ca.gov/dlrp/fmmp/Pages/Index.aspx  

Housing density (EPA) iclus2010b2 http://cfpub.epa.gov/ncea/cfm/recordisplay.cfm?deid=205305  

Renewable Energy Generation Potential on EPA and 

State Tracked Sites, 

EPA_OCPA_Renewable_Energy_Shapefile 

http://www.epa.gov/renewableenergyland/data.htm  

Significant Topographic Changes (USGS) topochange http://topochange.cr.usgs.gov/  

Roads (ESRI) StreetMap USA\Streets\streets.sdc ESRI 

Railroads (ESRI) StreetMap USA\ 

stmap_plus\rail100k.sdc 

ESRI 

Transmission lines for condition (BLM) ptllca http://www.blm.gov/ca/gis/  

Canals and aqueducts (ESRI)  StreetMap USA\ mapdata\ md_riv.sdc  

Category I Exclusion areas (RETI) CategoryI_Lands http://www.energy.ca.gov/reti/documents/index.html  

FWS Critical Habitat for Threatened & Endangered 

Species 

http://criticalhabitat.fws.gov/docs/crithab/crithab_all/crithab_all_layers.zip, 

accessed 08/31/11 

Highways (ESRI) StreetMap USA—

Streets/highways.sdc 

ESRI 

Substations (RETI) Collector_Substations (select 

Existing only) 

http://www.energy.ca.gov/reti/documents/index.html  

Transmission lines for costdistance (RETI) 

RETI_Conceptual_Proposed_Transmission_Segments 

(as per Dudek Proposed Approach to the DRECP 

Effects Analysis, dated June 30, 2011) 

http://www.energy.ca.gov/reti/documents/index.html 

Census 2000 urbanized areas and urban clusters http://www.census.gov/geo/www/ua/ua_2k.html  

 

Study area delineation 
Select by attributes from calecos94_4 (USFS ECOMAP) where Province = “322” or Subsection = “Salton”  
BUFFER calecos94_4 by 20km FULL side type and ALL dissolve  ecomap322_buffer20km 
# FMMP shapefiles for Kern, San Bernardino, LA, Riverside, Imperial, and San Diego (Inyo not mapped) 
CLIP fmmp2008 by ecomap322_buffer20km  fmmp_ecomap_clip 
 
GIS pre-processing 
 
Recovery model = CellStats Max (ag disturb score, fire disturb score) in Degradation ModelBuilder 
model 
 
Recovery Model—Time since farmed 

http://www.fs.fed.us/r5/rsl/clearinghouse/gis-download.shtml�
http://www.conservation.ca.gov/dlrp/fmmp/Pages/Index.aspx�
http://frap.cdf.ca.gov/data/frapgisdata/select.asp�
http://www.conservation.ca.gov/dlrp/fmmp/Pages/Index.aspx�
http://cfpub.epa.gov/ncea/cfm/recordisplay.cfm?deid=205305�
http://www.epa.gov/renewableenergyland/data.htm�
http://topochange.cr.usgs.gov/�
http://www.blm.gov/ca/gis/�
http://www.energy.ca.gov/reti/documents/index.html�
http://criticalhabitat.fws.gov/docs/crithab/crithab_all/crithab_all_layers.zip�
http://www.energy.ca.gov/reti/documents/index.html�
http://www.energy.ca.gov/reti/documents/index.html�
http://www.census.gov/geo/www/ua/ua_2k.html�
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Run agconvert.py on yearlist.txt of FMMP<year> shapefiles from 1984 to 2008 where polygon_ty = P, S, 
U, I, N, CI, or sAC  grids with 0 if not farmed and <year> if farmed in that period 
CELLSTATS Max on all grids 1988 to 2008  Cellmax_fmmp 
# 7/29/11 changed L (local importance) to 0 in AGCODE because in these counties it was usually used for 
P/S soils that were not irrigated or farmed and therefore not degraded habitat 
Run Ag Disturbance ModelBuilder model 
# subtracts latest year farmed from 2009, takes natural log (Ln), then score = 100 - 13.14 * Ln_farm_age 
 

 
F igure 10. Ag Dis turbanc e ModelB uilder model:  “ T ime s inc e farmed” .  

 
Recovery Model—Number of times burned—revised 09/29/11 
Run firehistory2.py on fire09_1.gdb with startyear and endyear  timeburn grid with # of times burned 
and grids for each year burn<year>two with 0 if not burned and <year> if burned in that year 
burnfreqscr = con([timeburn] > 3,40,[timeburn] * 10)   
# max score = 40 if burned at least 4 times since 1895 
# 1999, 2005, 2006 followed particularly wet years with a flush of non-native annual grasses so set those 
years to score of 30 
burnwetyr = con([burn1999two] > 0 | [burn2005two] > 0 | [burn2006two] > 0,30,0) 
firescore = max([burnfreqscr],[burnwetyr]) 
 
Permanent “Removal” Score = CellStats Max (develop, iclus2010b2, hazardsite3, and topochange) in 
Degradation ModelBuilder model 
Permanent “Removal” Score—Urban and built-up land Score 
JOIN FMMP.LUT to fmmp2008 attribute table by polygon_ty 
FEATURE to RASTER fmmp2008 by Develop  develop, where D (urban or built-up) = 100, V (vacant or 
disturbed) = 70, R (rural residential) = 8 (as per housing density below), else 0 
# Vacant score reduced from 90 to 70 on 9/1/11 based on peer review 
 
Permanent “Removal” Score—Housing Density Score 
SA Reclass bhc2010b2 (ICLUS data)  EcoCondition/iclus2010b2 (ICLUS HD Score in Degradation 
Model), 1 (rural) = 1, 2 (exurban) = 8, 3 (suburban) = 57, 4 (urban) = 100, 99 (commercial/industrial) = 
100, NODATA = 0    # with cell size 90 and extent/snap = cellmax_fmmp, and projected to dataframe 
coord system; based on Housing impacts factor in Legacy Ecological Condition Index (Davis et al. 2003) 
derived from Theobald and rescaled to 100 for urban class; note that public lands are considered 
undevelopable in ICLUS so  
Convert fmmp2008 to raster  temp by polygon_ty 
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SA Reclass temp  EcoCondition\iclus2010b2, Rural Residential Land (0.25 – 1.25 housing units/ha 
approx = ICLUS Exurban class) = 8, Vacant or Disturbed Land = 90, Urban or Built up Land = 100, else 0    
# with cell size 90 and extent/snap = cellmax_fmmp, and projected to source coord system 
 
Permanent “Removal” Score—EPA hazard sites 
PROJECT  CA-NV-AZ_GEODATA_Shapefile_Feb2011  CA-NV-AZ_GEODATA_Shape_teale83 with 
NAD_1983_California_Teale_Albers coord system 
# need to project since original is in decimal degrees. Shapefile includes mines, landfills, and toxic sites 
that EPA tracks. 
 
BUFFER CA-NV-AZ_GEODATA_Shape_teale83  epasites_buf450 Field = Radius_m (450 meters) 
Dissolve = NONE 
Field Calculator Reg_ID = 100 
# but first select points in study area. roughly equivalent to 50 hectare circle; no size reported in EPA 
database of sites, which include AFS, TRI, LQG, ACRES (brownfields), RMP and others; often the point 
location is the entrance, but the position of the facility relative to the entrance is unknown.  
SA Feature to Raster epasites_buf450  epasites_buf2 by Reg_ID 
Add Field to CA_EPA_OCPA_Renewable_Energy_Shapefile_subset  Radius_m  Float 
 # subset excluded sites with no acreage given and sites in the Federal Superfund program that tended 
to have very large acreage like military bases 
Field Calculator: Radius_m = Sqr(MapAcreage acres / 2.47 acres/ha / 3.1416 * 10000 m2/ha) 
 
PROJECT  CA_EPA_OCPA_Renewable_Energy_Shapefile_subset   
CA_EPA_OCPA_Renewable_Energy_teale  with NAD_1927_California_Teale_Albers coord system 
# need to project since original is in decimal degrees and radius needs to be in meters to create buffers. 
 
BUFFER CA_EPA_OCPA_Renewable_Energy_teale   CA_EPA_OCPA_buffer Field = Radius_m and 
Dissolve = ALL 
Field Calculator Ref = 100 
SA Feature to Raster CA_EPA_OCPA_buffer  EPA_OCPA_buf by Ref 
Raster Calc: hazardsite3 = con(IsNull([epasites_buf2]), con(IsNull([EPA_OCPA_buf]),0,100),100) 
# use if epasites_buf2 is null, and EPA_OCPA_buf is null, set background to zero, else set to 100  
 
Permanent Score—Utility Score—dropped from model 07/29/11 
SA Straightline Distance from ptllca   EcoCondition/utildist   # includes pipelines, phone, and power 
transmission 
SA Reclass utildist  utilscore, 0-90 = 50, 90-180 = 25, > 180 = 0 
 
Permanent “Removal” Score—TopoChange Score (added 07/29/11) 
Topochange layer from USGS at http://topochange.cr.usgs.gov/ as used in Kiesecker et al. (2011). 
Delete polygons for road cuts or that do not appear to be real impacts (remote areas)  
topo_change_CA_mines 
PROJECT topo_change_CA_mines  topo_change_CA_mines_Teale83  
Convert to raster  topochangerst 
Raster Calc: topochangescr = con(IsNull([topochgrst]),0,100) 
 
Degree of Fragmentation Model = CellStats Max (rd_score2, rr_score, tx_score, and can_score) in 
Degradation ModelBuilder model 

http://topochange.cr.usgs.gov/�
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Roads 
Select Streets (Detailed) from the StreetMap USA\Streets\streets.sdc Feature Dataset in the Desert 
study area  my_streets in EcoCondition folder 
Join streetclass_lut to my_streets by CLASS_RTE 
# weighting the class of road derived from TNC lu_rd_cost\metadata.xml: Limited Access (freeways, 
CLASS_RTE 0,1) = 9; Highway (2) = 6; Major Road (3) = 4; Local Road (4) = 3; Minor Road (5) = 1; Other 
Road (6) = 3; Ramp (7) = 9; Ferry (8) = 0; Pedestrian Way (9) = 1 
# Note that NPScape SOP weights interstate roads by a factor of 5 and remaining major roads (FCC: A20-
A38) by a factor of 3, else weight = 1, and they summed weighted road length in 1 km2 polygons, so 
approximately 500m search radius. 
 
LINEDENSITY mystreets streetclass_lut.rd_weight 90m cell size 450m search radius, units in km/sq.km  
street_linedn 
Raster Calc: Ist_LineDn = int(street_linedn) 
# (original version) Raster Calc: rd_score2 = con(Ist_LineDn >= 25,100,Ist_LineDn * 4)        
Raster Calc: rd_score2 = con(Ist_LineDn >= 50,100,Ist_LineDn * 2)       # modified 08/31/11 to reduce 
influence of fragmentation 
# linear transform between 0 and 50, then plateaus at 100 above 50 
 
Railroads 
Select Railroads (Local) from the StreetMap USA\ stmap_plus\rail100k.sdc Feature Dataset in the Desert 
study area  my_railroads in EcoCondition folder 
# railroads between a Highway and Major Road so weight = 5 using the Weight field 
LINEDENSITY my_railroads Weight 90m cell size 450m search radius, units in km/sq.km  rr_linedn 
# (original version) Raster Calc: rr_score = int(con(rr_LineDn >= 25,100,rr_LineDn * 4))     
Raster Calc: rr_score = int(con(rr_LineDn >= 50,100,rr_LineDn * 2))        # modified 08/31/11 to reduce 
influence of fragmentation 
# linear transform between 0 and 50, then plateaus at 100 above 50 
 
Transmission lines 
Select FEATURE_TY = Power from the ptllca shapefile from BLM 
PROJECT to Teale AD 1983 projection  ptllca_Tealeproj 
# Transmission lines associated with unpaved roads so weight = 1 (default) 
LINEDENSITY ptllca_Tealeproj default 90m cell size 450m search radius, units in km/sq.km  itx_linedn 
# (original version) Raster Calc: tx_score2 = int(itx_LineDn * 4)   
Raster Calc: tx_score2 = int(itx_LineDn * 2)  # modified 08/31/11 to reduce influence of fragmentation 
# linear transform between 0 and 50, then plateaus at 100 above 50 
 
Canals/aqueducts 
Select Rivers (Detailed) from the StreetMap USA\ mapdata\ md_riv.sdc Feature Dataset in the Desert 
study area where CFCC = H21  my_aqueducts_H21 
Select only those LIKE ‘%California Aqueduct%’ OR LIKE ‘%All-America%’ OR = ‘Coachella Canal’ 
Delete some branch canals by hand and then hand-digitize gaps in California Aqueduct  
my_aqueducts3 
PROJECT to Teale AD 1983 projection  my_aqueducts3_Teale83 
# canals/aqueducts vary from 8-25 meters across plus embankments so weight them between a 
Highway and Major Road = 5 using the Weight field 
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LINEDENSITY my_aqueducts3_Teale83 Weight 90m cell size 450m search radius, units in km/sq.km  
canal_linedn 
Raster Calc: Ican_LineDn = con(IsNull([canal_linedn]),0,int([canal_linedn]))    # also replaces NoData 
# (original version) Raster Calc: can_score = con(Ican_LineDn >= 25,100,Ican_LineDn * 4)        
Raster Calc: can_score = con(Ican_LineDn >= 50,100,Ican_LineDn * 2)  # modified 08/31/11 to reduce 
influence of fragmentation 
# linear transform between 0 and 50, then plateaus at 100 above 50 
 

 
F igure 11. On-s ite Degradation ModelB uilder model. T ools  us e the Maximum option s o that mos t 
degrading factor prevails .  

 
Cost Surface 
Add Field to RETI_CategoryI_Lands  Cost  Long integer 
Field Calculator: Cost = 10000     # make artificially high cost to preclude costpath from crossing 
exclusion areas 
CLIP RETI_CategoryI_Lands  by selected counties  myCategoryI_Lands 
PROJECT  myCategoryI_Lands  myCategoryI_Lands_teale83  # to make raster conversion work right 
SA Feature to Raster myRETI_CategoryI_Lands_teale83     EcoCondition/cat1_cost by Cost 
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Repeat for Military_Lands   EcoCondition/dod_cost    # deleted, 7/1/11 based on guidance from 
Dudek’s Proposed Approach to DRECP Effects Analysis memo dated 6/30/11 that transmission lines 
could cross military bases 
 
CLIP CRITHAB_POLY  by study area  crithab/crithab_clip   # added 9/1/11 based on peer review 
Add Field to crithab_clip  Cost  Long integer 
Field Calculator: Cost = 1000     # make artificially high cost to preclude costpath from crossing exclusion 
areas 
PROJECT  crithab_clip  mycrithab_clip_teale83  # to make raster conversion work right 
SA Feature to Raster mycrithab_clip_teale83   crithab_cost by Cost 
 
Cost Distance Model, reverses Degraded Score, and replaces NULL with 1 in cat1_cost and crithab_cost, 
then finds Maximum CellStatistics for costsurface; computes costdistance across costsurface from 
highways, existing substations, and transmission lines. 
 

 

F igure 12. C os t Dis tanc e ModelB uilder model:  “ Off-s ite Impac ts ”  s ubnetwork.  

 
The Compatibility model scales the Off-Site Disturbance raster by con(100 - 0.000025 * Off-Site 
Disturbance < 0, 0, 100 - 0.000025 * Off-Site Disturbance), which converts the costdistance measure into 
a 0-100 range. Subracting from 100 flips the scale so that lower off-site disturbance equals greater 
compatibility. The original off-site scaling was revised as suggested by the peer review, since the original 
version tended to indicate high compatibility even in remote areas. This value and the Degraded Score 
are then averaged. 
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F igure 13. C ompatibility ModelB uilder model.  
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6.2. Details of photo interpretation of NAIP imagery 
6.2.1. Data Sources 

• National Agricultural Inventory Program (NAIP) 2009. Available for download from the 
State of California’s Geospatial Library 
(http://atlas.ca.gov/download.html#/casil/imageryBaseMapsLandCover/imagery/naip/na
ip_2009/2009_NAIP_sid_county_compressions). Format: digital ortho quarter quads 
(DOQQs) compressed into a single mosaic (MrSID MG3).  

• NAIP 2010. Imagery for the State of California was accessed through the USDA’s Aerial 
Photography Field Office (APFO) ArcGIS server (adding 
http://gis.apfo.usda.gov/arcgis/services to the Add ArcGIS Server connection). Format: 
Digital Ortho Quarter Quad (DOQQs) in GeoTIFF format. 

• BLM solar energy zones (SEZs) and solar energy development areas ( (Solar 
Programmatic Environmental Impact Statement,  PEIS): 
http://solareis.anl.gov/maps/gis/index.cfm. 

• DRECP boundary (January 28, 2011): 
http://www.drecp.org/maps/DRECP_Boundary_Shape_Files/  

• Western Mojave Ecoregion designation “322Ag: High Plains and Hills”: 
http://www.fs.fed.us/r5/projects/ecoregions/322a.htm 

• Solar Constraints Map, Bren Group Project: “The Future of Large-scale Solar Energy in 
California”: http://fiesta.bren.ucsb.edu/~solar/documents.html. 

6.2.2. Methodology 
• Using the “Create Random Points” tool, a point shapefile of 500 random points was 

created with the minimum distance between points designated as 500 meters and the 
DRECP boundary assigned as the constraining feature class. 

• Using the “Buffer” tool, a buffer with a radius of 90 meters was created for each of the 
points (Figure 14).  

• Based on photointerpretation of the NAIP digital orthophotography within each 90 m 
buffer, the following attributes were assigned to each point:  

T able 5. Attributes  and coding for photoplots .  

Attribute code description 
checked Y point has been checked 

 
Blank Not yet checked 

condition  

This is codified depending on the condition of the land and the type 
of land use. The first number is the level of disturbance (0-3) and the 
second number in the code is the type of land use causing the 
disturbance. 

 
Level of 
Disturbance 

 

http://atlas.ca.gov/download.html#/casil/imageryBaseMapsLandCover/imagery/naip/naip_2009/2009_NAIP_sid_county_compressions�
http://atlas.ca.gov/download.html#/casil/imageryBaseMapsLandCover/imagery/naip/naip_2009/2009_NAIP_sid_county_compressions�
http://gis.apfo.usda.gov/arcgis/services�
http://solareis.anl.gov/maps/gis/index.cfm�
http://www.drecp.org/maps/DRECP_Boundary_Shape_Files/�
http://www.fs.fed.us/r5/projects/ecoregions/322a.htm�
http://fiesta.bren.ucsb.edu/~solar/documents.html�
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0 no apparent disturbance 

 
1 slight land cover disturbance 

 
2 substantial land cover disturbance 

 
3 complete transformation of land 

 
Land Use  

 
1 fire 

 
2 farming 

 
3 urban (rural, residential, commercial) 

 
4 pipelines 

 
5 landfills 

 
6 mines 

 
7 road 

 
0 unclassified or unidentifiable 

highways 0-n 
Number of highways that intersects a 90 meter buffer around each 
point. 

paved 0-n 
Number of paved roads (other than major highways) that intersect a 
90 meter buffer around each point. 

unpaved 0-n 
Number of unpaved roads (including OHV roads) that intersect a 90 
meter buffer around each point. 

trans 0-n 
Number of transmission lines that intersect a 90 meter buffer around 
each point. 

rail 0-n 
Number of railroads that intersect a 90 meter buffer around each 
point.  

notes  
Notes on the area regarding information that is not otherwise 
codified in the other columns. 

 

We recorded the attributes for 381 points within the study area boundary. Five hundred points 
were randomly created, 250 of these were photointerpreted using the coding in Table 5. With 
the remaining 250 points, we selectively chose points within the Western Mojave Desert 
Ecoregion, the BLM’s Solar Energy Development Areas, and in the areas where solar 
development is feasible (outside of U.S. Department of Defense lands, urban areas, airports, 
National Parks, etc.) 
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F igure 14. E xample of a photoplot point and 90 meter radius  buffer.  T his  point was  s c ored with a 
condition value of 1, s light land cover dis turbanc e.  
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6.2.3. Comparison of Photo Interpreted Plots with Model Results 
The contingency tables below compare the classifications assigned to the set of photo 
interpreted points within each respective study area to the output scores of each model. The 
continuous scores were grouped based analysis of the distribution of scores for each model. 

Table 6. Comparison of model scores to photo interpreted point scores for Impacted Native Cover. 
Model scores were binned to align with the definitions for each class.  
 

 
Model Impacted Native Cover Score 

 

 
  0-1 (0) >1 - 45 (1) >45 - 90 (2) >90 (3) TOTAL 

Ph
ot

o 
In

te
rp

re
ta

tio
n 

Co
nd

iti
on

 S
co

re
 0 214 70 0 0 284 

1 13 22 2 0 37 

2 7 11 4 1 23 

3 1 6 3 27 37 

TOTAL  235 109 9 28 381 

       

 

Overall 
Agreement: 0.70 

   
 

Kappa Statistic: 0.41 
   

 
Model shows more degradation than aerial photography 0.19 

 
Aerial photography shows more degradation than model 0.11 

 

Table 7. Comparison of model scores to photo interpreted point scores for fragmentation. 
 

 
Model Fragmentation Score 

 

  
0-1 (0) 1 - 33 (1) 33 - 67 (2) 67 - 100 (3) TOTAL 

Ph
ot

o 
In

te
rp

re
ta

tio
n 

Fr
ag

m
en

ta
tio

n 
Sc

or
e 

0 162 70 9 1 242 

1 19 67 24 7 117 

2 1 5 6 4 16 

3 0 0 1 5 6 

TOTAL  182 142 40 17 381 

      

  
Overall Agreement: 0.63 

  

 
Kappa Statistic: 0.36 

   

 
Model shows more fragmentation than photoplots  0.30 

 
Photoplots show more fragmentation than model 0.07 
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Table 8. Comparison of model scores to photo interpreted point scores for degradation. 
 

 
Model Degradation Score 

 

  
0-1 (0) 1 - 45 (1) 45 - 90 (2) >90 (3) TOTAL 

Ph
ot

o 
In

te
rp

re
ta

tio
n 

O
ve

ra
ll 

Sc
or

e 

0 128 91 6 0 225 

1 15 65 8 3 91 

2 2 13 9 3 27 

3 0 4 4 30 38 

TOTAL  145 173 27 36 381 

       

 
Overall Agreement: 0.61 

   

 
Kappa Statistic: 0.40 

   

 
Model shows more degradation than photoplots 0.29 

 
Photoplots show more degradation than model 0.10 

 

 
Table 9. Comparison of Human Footprint (HF) classes to photo interpreted point scores for 
degradation. 

 
HF classes 

 

 
  1 (0) 2,3,4 (1) 5,6,7 (2)  8,9,10 (3) TOTAL 

Ph
ot

o 
In

te
rp

re
ta

tio
n 

De
gr

ad
ed

 S
co

re
 0 21 190 49 1 261 

1 3 34 32 1 70 

2 0 13 25 2 40 

3 0 1 27 25 53 

TOTAL  24 238 133 29 424 

       

 
Overall Agreement: 0.29 

   

 
Kappa Statistic: 0.15 

   

 
Model shows more degradation than photoplots: 0.65 

 
Photoplots show more degradation than model: 0.10 
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Table 10. Comparison of TNC overall scores to photo interpreted point scores for degradation. 

 
TNC scores 

 

 
  0 (0) 0-0.3 (1) 0.3-3 (2) >3 (3) TOTAL 

Ph
ot

o 
In

te
rp

re
ta

tio
n 

O
ve

ra
ll 

Sc
or

e 

0 145 66 7 2 220 

1 13 38 6 0 57 

2 3 15 15 2 35 

3 1 8 14 26 49 

TOTAL  162 127 42 30 361 

       

 
Overall Agreement: 0.62 

   

 
Kappa Statistic: 0.41 

   

 
Model shows more degradation than photoplots: 0.23 

 
Photoplots show more degradation than model: 0.15 

 
 
Table 11. Comparison of TNC roads to photo interpreted point scores for fragmentation. 

 
TNC roads score 

 

 
  0 (0) >0-0.02 (1) >0.02-0.1 (2) >0.1 (3) TOTAL 

Ph
ot

o 
In

te
rp

re
ta

tio
n 

Fr
ag

 S
co

re
 

0 144 37 35 2 218 

1 16 21 47 19 103 

2 1 0 0 4 5 

3 0 0 1 5 6 

TOTAL  161 58 83 30 332 

       

 
Overall Agreement: 0.47 

   

 
Kappa Statistic: 0.15 

   

 
Model shows more degradation than photoplots: 0.43 

 
Photoplots show more degradation than model: 0.05 

 
 

6.2.4. Model Results in Solar Energy Zones (SEZs) 
 
T able 12. Mean s cores  within each S E Z des ignated by B L M. 

    
Mean on-site 

degradation score 
Mean off-site impact 

score 
Mean compatibility 

score 

BL
M

 S
ol

ar
 

En
er

gy
 Z

on
e 

(S
ol

ar
 P

EI
S)

 Imperial East 8.9 87.8 48.0 

Iron Mountain 1.6 73.4 37.2 

Pisgah 8.8 91.3 49.8 

Riverside East 3.0 52.2 27.0 
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T able 13. S ummary of S c ores  within B L M-des ignated S E Zs .  

    On-Site Degradation Score 
    Mean Min Max StdDev 

BL
M

 S
ol

ar
 

En
er

gy
 Z

on
e 

(S
ol

ar
 P

EI
S)

 Imperial East 8.9 0 100 14.3 
Iron Mountain 1.6 0 28 3.7 

Pisgah 8.8 0 100 11.2 
Riverside East 3.0 0 100 6.0 

  
Off-site Impact Score 

  
Mean Min Max StdDev 

BL
M

 S
ol

ar
 

En
er

gy
 Z

on
e 

(S
ol

ar
 P

EI
S)

 Imperial East 87.8 80 94 0.41 
Iron Mountain 73.4 40 93 10.0 

Pisgah 91.3 68 99 4.6 
Riverside East 52.2 0 88 15.6 

  
Compatibility Score 

  
Mean Min Max StdDev 

BL
M

 S
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ar
 

En
er

gy
 Z

on
e 

(S
ol

ar
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EI
S)

 Imperial East 48.0 40 90 6.9 
Iron Mountain 37.2 20 53 5.5 

Pisgah 49.8 34 98 6.8 
Riverside East 27.0 0 94 8.4 

 

6.3. List of reviewers of initial model 
 

Name Affiliation 
Dick Cameron, Brian Cohen, and John Randall The Nature Conservancy 
Ileene Anderson Center for Biological Diversity 
Jerre Ann Stallcup and Wayne Spencer  Conservation Biology Institute 
Mike Howard Dudek 
Susan Lee and Amy Morris Aspen Environmental Group 
Ryan Drobek Center For Energy Efficiency And Renewable 

Technologies 
Todd Keeler-Wolf and Diana Hickson California Department of Fish and Game 
Ashley Conrad-Saydeh Bureau of Land Management 
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